If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+3x-7.5=0
a = 4.9; b = 3; c = -7.5;
Δ = b2-4ac
Δ = 32-4·4.9·(-7.5)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-2\sqrt{39}}{2*4.9}=\frac{-3-2\sqrt{39}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+2\sqrt{39}}{2*4.9}=\frac{-3+2\sqrt{39}}{9.8} $
| b-7=59 | | 17+r/3=26 | | -2t+8=-4t-8 | | 8x^2=2x-6 | | 9x=72+18 | | 12/x=24/30 | | h-80/2=6 | | n/42=18/84 | | 65+-1.5y+5y=100 | | 2+2m=16-72m | | 2x-6=2.5+7.5 | | 1=(9x+1)2=(10x-10) | | n/42=18/74 | | 8t+16=64 | | 14m-6m-7m=5 | | z/6+49=53 | | -10(x-3)=(-8x) | | 3n/42=18/84 | | 65+5y=100 | | 9q+19=91 | | 5.8q+6.5q+5.22=-2.26+7.9q | | m-(-5)=-10 | | 182÷14=n | | -2(4x+6)=-5-10x+3 | | -10-10d=10-8d | | 5(9+d)−6d=3 | | 2(k-41)=38 | | -3(5x+2)=-4-17x+6 | | u/3+15=20 | | 3a+3a-6a+2a=12 | | 8-5h=h+1-5h | | 6m+6(6-7m)=216 |